KAIO-Beamline – a modular high-repetition rate laser-

plasma electron accelerator for a broad range of applications

C. Greb¹, V. Nefedova², E. Aktran³, C. Sire², F. Sylla², L. Daniault⁴, J. Kaur⁴,

- R. Lopez-Martens⁴, A. Dickson⁵, R. Adam¹, B. Hidding^{3,5}, M. Büscher^{1,3}
- ¹ Forschungszentrum Jülich GmbH, PGI-6, 52428 Jülich, Germany

² SourceLABSAS, 91120 Palaiseau, France

³ Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

⁴ Laboratoire d'Optique Appliquée, 91762 Palaiseau, France

⁵ Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK.

c.greb@fz-juelich.de

The novel KAIO-Beamline was designed to address the use of laser-plasma accelerators (LPA) for scientific and societal applications. Its modular design incorporates (i) an industrial-grade high average power laser system, (ii) an efficient temporal post-compression stage, based on multi-pass cell technology [1], to reach optimal electron acceleration conditions in the few-cycle [2], and (iii) a compact electron accelerator module with integrated user interface and data management system. The KAIO-Beamline approach is compatible with a wide range of commercial laser platforms.

Figure 1: The KAIO-Beamline: the industrial laser system (e.g. ASTRELLA Ti:Sapphire laser from Coherent Inc.) (a) is compressed to produce few-cycle pulses (b) and then sent into the compact table-top e-KAIO source (c) for electron and radiation generation.

Here we will present the first performance results of the KAIO-Beamline using a commercial ASTRELLA Ti:Sapphire laser (Coherent Inc.), delivering 40 fs pulses at 1 kHz repetition rate with energies up to 7 mJ. The laser pulses are comprehensively characterized with novel spatio-temporal metrology tools, such as INSIGHT [3] and TIPTOE [4] techniques.

References

- [1] L. Daniault, et al., Opt. Lett. 46, 5264 (2021)
- [2] D. Guénot et al., Nature Photonics 11(5), 293-297 (2017)
- [3] A. Borot and F. Quéré, Opt. Express 26, 26444 (2018)
- [4] W. Cho et al., Sci Rep 9, 16067 (2019)