Operation of the COXINEL line at HZDR

<u>A. Ghaith^{1,2}</u>, A. Irman², J. P. Couperus Cabadağ² for COXINEL Collaboration ¹Synchrotron SOLEIL, ²Helmholtz-Zentrum Dresden-Rossendorf a.ghaith@hzdr.de

The COXINEL line enables to control, transport and manipulate a highly divergent electron beam generated from laser plasma accelerator (LPA). The beamline consists of high gradient permanent magnet-based quadrupoles to mitigate the emittance growth, a chicane to reduce the slice energy spread and a set of quadrupoles before the undulator for chromatic matching. In combination with the HZDR DRACO 100 TW ultra-short pulse laser capable of producing high quality electron beams with 0.7 mrad divergence, around 5% energy spread and 5 pC/MeV charge density, free electron laser (FEL) has been successively achieved in the seeded configuration [1]. We report here on the electron beam transport methods and optimization with the use of five imaging systems installed along the line, a UV spectrometer to characterize undulator radiation by measuring the spatio-spectral distribution, alongside other diagnostics such as ICT, streak camera and UV camera, that enabled for FEL amplification.

References

 M. Labat, J.P. Couperus Cabadağ, A. Ghaith, A. Irman, et al. "Seeded free-electron laser drive by a compact laser plasma accelerator" Nature Photonics (2022), https://doi.org/10.1038/s41566-022-01104-w