Development of laser-plasma accelerators at HZDR for FEL applications

<u>A. Irman</u>¹, M. Bussmann², Y.-Y. Chang¹, J. P. Couperus Cabadağ¹, A. Debus¹, M. Downer³, M.-E. Couprie⁴, A. Ghaith^{4,1}, A. Köhler¹, M. Labat⁴, M. LaBerge^{1,3}, R. Pausch¹, S. Schöbel^{1,5}, K. Steiniger¹, P. Ufer^{1,5}, O. Zarini¹, U. Schramm^{1,5}

¹Helmholtz-Zentrum Dresden-Rossendorf,

²Center for Advanced Systems Understanding CASUS,

³The University of Texas at Austin,

 $^4Synchrotron\ SOLEIL,$

⁵ Technische Universität Dresden

a.irman@hzdr.de

We present the development of laser-plasma accelerators at HZDR to produce high quality electron beams which enable the recent demonstration of free-electron lasing in the seeding configuration [1]. Driven by the 100TW- class arm of the DRACO laser, the accelerator can deliver up to nC total charge with spectral charge density reaching 10 pC/MeV, less than 1 mrad divergence at energies up to 0.5 GeV and peak currents of over 10 kA. Precise characterization of the drive laser on target (spatio-temporal coupling), plasma wave structures (few-cycle shadowgraphy) and generated electron beams (CTR imaging and spectroscopy) is paramount for controlled and stable multi-day operation, allowing for systematic studies of the output beam parameters. Results from each diagnostic will be discussed and a future perspective of using a hybrid LPA-based driven PWFA (LPWFA) concept for beam quality booster will be briefly mentioned.

References

 M. Labat, J.P. Couperus Cabadağ, A. Ghaith, A. Irman, et al. "Seeded free-electron laser drive by a compact laser plasma accelerator" Nature Photonics (2022), https://doi.org/10.1038/s41566-022-01104-w