Automated control and optimisation of laser-driven ion acceleration

B. Loughran¹, M. J. V. Streeter¹, H. Ahmed², S. Astbury², M. Balcazar³, M. Borghesi¹,

N. Bourgeois², C. B. Curry⁴, S. J. D. Dann², S. DiIorio³, N. P. Dover⁵, T. Dzelzanis²,

O. C. Ettlinger⁵, M. Gauthier⁴, L. Giuffrida⁶, G. D. Glenn⁴, S. H. Glenzer⁴,

J. S. Green², R. J. Gray⁷, G. S. Hicks⁵, V. Istokskaia⁶, M. King⁷, D. Margarone¹,

O. McCusker¹, P. McKenna⁷, Z. Najmudin⁵, C. Parisuaña⁴, P. Parsons¹, C. Spindloe²,

D. R. Symes², A. G. R. Thomas³, F. Treffert⁴, N. Xu⁵, and C. A. J. Palmer¹,

¹ School of Mathematics and Physics, Queen's University Belfast, Belfast UK,

² Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK

³ Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, USA

⁴ SLAC National Accelerator Laboratory, California, USA

⁵ The John Adams Institute for Accelerator Science, Imperial College London, UK

⁶ ELI Beamlines Centre, Czech Academy of Sciences, Czech Republic

⁷ Department of Physics, SUPA, University of Strathclyde, Glasgow, UK

bloughran08@qub.ac.uk

The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimisation of secondary radiation. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimisation through probing the complex interaction with higher statistical accuracy. Here [1], an automated, HRR-compatible system produced high fidelity parameter scans (1D and 2D), revealing the influence of laser intensity on target pre-heating and proton generation. For higher dimensions, Bayesian optimisation using Gaussian process regression is a tool that can be used to map the interaction and optimise chosen outputs [2]. A closed-loop Bayesian optimisation of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually-optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimisation of laser-driven proton beams is a step towards deeper physical insight and the construction of future radiation sources.

Acknowledgments

We acknowledge support from the following grants: UK STFC ST/V001639/1 and ST/P002021/1; UK EPSRC EP/V049577/1 and EP/R006202/1; U.S. DOE FWP No. 100182; National Science Foundation No. 1632708 and No. 1903414. Special thanks goes to the staff at the Central Laser Facility who provided support throughout the experiment.

References

- [1] B. Loughran et al. Automated control and optimisation of laser-driven ion acceleration. *High Power Laser Science and Engineering*, 2023 [submitted].
- [2] R. J. Shalloo et al. Automation and control of laser wakefield accelerators using Bayesian optimization. *Nature Communications*, 11(1):0–7, 2020.